
  

AFRL-IF-RS-TR-2005-278 
Final Technical Report 
July 2005 
 
 
 
 
 
 
APPLICATION-LEVEL ANOMALY DETECTION 
FOR THE MASTER CAUTION PANEL 
  
Columbia University 
 
  
Sponsored by 
Defense Advanced Research Projects Agency 
DARPA Order No. P093 
 
 
 
 
 
 
 
 
 
 
 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 
 
 

The views and conclusions contained in this document are those of the authors and should not be 
interpreted as necessarily representing the official policies, either expressed or implied, of the 
Defense Advanced Research Projects Agency or the U.S. Government. 
 
 
 
 
 
 
 
 

AIR FORCE RESEARCH LABORATORY 
INFORMATION DIRECTORATE 

ROME RESEARCH SITE 
ROME, NEW YORK 

 



  

STINFO FINAL REPORT 
 
 
 This report has been reviewed by the Air Force Research Laboratory, Information 
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical 
Information Service (NTIS).  At NTIS it will be releasable to the general public, 
including foreign nations. 
 
 
 AFRL-IF-RS-TR-2005-278 has been reviewed and is approved for publication 
 
 
 
 
 
 
 
APPROVED:         /s/ 
 

GLEN E. BAHR 
Project Engineer 

 
 
 
 
 
 
 FOR THE DIRECTOR:           /s/ 
 

WARREN H. DEBANY, JR., Technical Advisor 
  Information Grid Division 
Information Directorate 

 
 
 
 
 
 
 
 



  

 

REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 074-0188 
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and 
maintaining the data needed, and completing and reviewing this collection of information.  Send comments regarding this burden estimate or any other aspect of this collection of information, including 
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA  22202-4302, 
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503 
1. AGENCY USE ONLY (Leave blank) 
 

2. REPORT DATE
JULY 2005

3. REPORT TYPE AND DATES COVERED 
Final  Sep 02 – Jun 04 

4. TITLE AND SUBTITLE 
APPLICATION-LEVEL ANOMALY DETECTION FOR THE MASTER 
CAUTION PANEL 
 

6. AUTHOR(S) 
Salvatore J. Stolfo 
 
  

5.  FUNDING NUMBERS 
C     - F30602-02-2-0209 
PE   - 62301E  
PR   - P093 
TA   -  CP 
WU  -  04 
 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
Columbia University 
Trustees of Columbia University in the City of New York 
Office of Projects and Grants 
1210 Amsterdam Avenue, Mail Code 2205, 254 Engineering Terrace 
New York New York 10027 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 
 
 

N/A 

9.  SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 
Defense Advanced Research Projects Agency   AFRL/IFGB 
3701 North Fairfax Drive                                     525 Brooks Road 
Arlington Virginia 22203-1714                             Rome New York 13441-4505 

10. SPONSORING / MONITORING 
      AGENCY REPORT NUMBER 
 

AFRL-IF-RS-TR-2005-278 
 

11. SUPPLEMENTARY NOTES 
 
AFRL Project Engineer:  Glen E. Bahr/IFGB/(315) 330-3515/ Glen.Bahr@rl.af.mil 

12a. DISTRIBUTION / AVAILABILITY STATEMENT 
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. 
 

12b. DISTRIBUTION CODE 
 
 

13. ABSTRACT (Maximum 200 Words) 
The goal of this work was to study how to monitor a large distributed system and apply machine learning methods to, 
and generate models of, its normal operation. With this done, the generated model(s) may be used to actively detect 
abnormal executions at run-time which may indicate improper use, attacks, or internal faults of the monitored system in 
question. We used the data collected by Master Caution Panel (MCP) software for the Theater Battle Management Core 
System (TBMCS) as sample data to test our machine learning methods. The MCP system has been under development 
for some time. It shares the same goal, but is based upon carefully designed and crafted "logic modules" that issue 
alerts when conditions warrant. The goal here is to use the existing monitoring and alert functions of MCP as a baseline 
to determine whether automated learning systems can achieve comparable performance in an automated fashion. A 
positive outcome of this study could suggest general principles of use in a wide range of mission critical systems. 
 

15. NUMBER OF PAGES
17

14. SUBJECT TERMS  
Cyber Panel Program, Master Caution Panel, Distributed System, Anomaly Detection, 
Machine Learning, Probabilistic Anomaly Detection Algorithm 16. PRICE CODE

17. SECURITY CLASSIFICATION 
     OF REPORT 
 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
     OF THIS PAGE 
 

UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
     OF ABSTRACT 
 

UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 
 
 

UL
NSN 7540-01-280-5500   Standard Form 298 (Rev. 2-89) 

Prescribed by ANSI Std. Z39-18 
298-102 



 

 

 

i

 
Table of Contents 

1. OVERVIEW ............................................................................................................1 

2. MCP .........................................................................................................................1 

3. PAD ALGORITHM.................................................................................................3 

4. EVALUATION........................................................................................................4 
4.1  Numerical Number Preprocess .........................................................................4 
4.2  RAWEVENT Representation ...........................................................................5 
4.3  Data and Model Details ....................................................................................6 
4.4  Performance Comparison..................................................................................7 

4.4.1 PingCollection...........................................................................................7 
4.4.2 unixProcessList and activeProcessInfoVector..........................................7 
4.4.3 swap and cpuUsage...................................................................................9 

4.5  Discussion .......................................................................................................10 

5. Subsequent Research Work ...................................................................................10 

6. Payload Anomaly Detection ..................................................................................11 

7. File System Anomaly Detection ............................................................................11 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

ii

 
List of Figures 

 
Figure 1. ROC curve for activeProcessInfoVector RAWEVENT when using the 

"native" RAWEVENT information. ........................................................................8 

Figure 2. ROC curve for activeProcessInfoVector RAWEVENT when using the 
“Dynamic” RAWEVENT information. ...................................................................8 

Figure 3. The ROC curve of unixProcessList RAWEVENT using information about 
all of the processes. The comparison is between representation approach I and 
approach II. ..............................................................................................................9 

 



 

 

 

1

1. OVERVIEW 
The goal of this work was to study how to monitor a large distributed system and 
apply machine learning methods to, and generate models of, its normal operation. 
With this done, the generated model(s) may be used to actively detect abnormal 
executions at run-time which may indicate improper use, attacks, or internal faults of 
the monitored system in question. We used the data collected by Master Caution 
Panel (MCP) software for the Theater Battle Management Core System (TBMCS) as 
sample data to test our machine learning methods. The MCP system has been under 
development for some time. It shares the same goal, but is based upon carefully 
designed and crafted “logic modules” that issue alerts when conditions warrant. The 
goal here is to use the existing monitoring and alert functions of MCP as a baseline to 
determine whether automated learning systems can achieve comparable performance 
in an automated fashion. A positive outcome of this study could suggest general 
principles of use in a wide range of mission critical systems. 

Section 2 describes how the current MCP software monitors the system and the logic 
used to generate alerts. Section 3 gives a brief description about the Probabilistic 
Anomaly Detection (PAD) algorithm we used in this study to generate alerts. PAD 
was designed and implemented in our previous research supported by the DARPA 
CyberPanel program. Section 4 details our test results using the phase1, 2, 3 data from 
SRA Adroit Center MCP Lab, and compares the alerts generated by the PAD to those 
generated by MCP. We thus have a means of determining how well PAD modeled 
MCP’s behavior, and how well we conformed to the hand-crafted rules of MCP. The 
phase 1 dataset was gathered from MCP and consists of a base set of data to reveal the 
necessary detail on sensor data formats. Phase 2 consisted of a set of data with 
purposefully injected faults to determine MCP’s alarm behavior used as a baseline; 
while Phase 3 was a similar dataset, but included a more substantial monitoring period. 
Considerable effort was involved in debugging MCP monitor data and elucidating 
some detailed aspects that were not immediately apparent in the preliminary 
documents received. The final section describes subsequent work performed on 
applying the anomaly detection algorithms to content data, as well as file system 
accesses on the various hosts implementing core elements of a distributed application. 

2. MCP 
The Master Caution Panel (MCP) software monitors the Theater Battle Management 
Core System (TBMCS) and analyzes the collected data to generate alerts. MCP is 
organized as a three-level monitoring system: The lowest level captures audit data 
from deployed sensors at various sites in the distributed system; the raw audit data is 
called RAWEVENT. The middle level of MCP processes the RAWEVENT data 
stream sent from the lowest level sensors to generate SUBEVENTs that essentially 
aggregate information into more meaningful state information about the operation of 
TBMCS. The highest level checks the SUBEVENTs (or combinations thereof) to 
generate ALERTEVENTs. An ALERTEVENT with a “DOWN” value means there is 
something wrong with the TBMCS system. 

The RAWEVENT stream is collected in a periodic fashion (every 20 seconds) by 
JavaScripts dispatched to each host computer, and is then sent to upper processing 
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levels for analysis. We applied PAD to this data stream, working directly on the 
RAWEVENT data to determine whether we may generate the same alerts as the 
analytics embedded in MCP at the higher levels. 

MCP collects 12 kinds of RAWEVENTs that describe the process state of each host 
on which a sensor is placed. They are: cpuUsage, totalSwap, reservedSwap, 
availSwap, allocatedSwap, swap, pingCollection, unixProcessList, 
activeProcessInfoVector, activeProcessDbSet, databaseOk. Among them, swap 
actually contains all the information of totalSwap, reservedSwap, availSwap, 
allocatedSwap. 

There are only three kinds of SUBEVENT data generated by MCP. They are: 
unixProcessInfoVector, pingFailureVector, and activeProcessInfoVector. They 
are generated from RAWEVENT data: unixProcessList, pingCollection and 
activeProcessInfoVector, respectively. The RAWEVENT unixProcessList is the 
information about all the processes running on each machine at the time of data 
collection. The sensor in this case is simply the Unix “ps” command. The 
RAWEVENT activeProcessInfoVector contains the active processes accessing the 
underlying TBMCS database from all the hosts at during the collection period. The  
RAWEVENT pingCollection describes the status of each host (alive or dead) and its 
ping time. 

There are two kinds of ALERTEVENTs. One is triggered by the pingFailureVector 
data and the other is triggered by a combination of unixProcessInfoVector and 
activeProcessInfoVector data. 

Although MCP collects 12 kinds of RAWEVENT data, the alerts generated in the 
data sets provided in this study apparently only used 3 of these events to generate 
alerts. (This may mean that only a subset of possible failure states of TBMCS have 
been exercised for this study.) For unixProcessList and activeProcessInfoVector, 
MCP analyzes only three specific processes: aps_assess, apsqtp and apsui. These 
three types of process are database-related. If there is a process running on some host, 
the database server should also have information about the process. 

The logic to generate an alert in the current MCP implementation appears to be as 
follows: 

1. When there is some host that has changed state from alive to dead; the ping 
sensor data changes from live to dead implying that the host has crashed, or is 
hung, its network access is disconnected. 

2. Among current unixProcessInfoVector and activeProcessInfoVector 
SUBEVENTs that are received, if there is some process (one of the aps_assess, 
apsqtp and apsui processes) from unixProcessInfoVector, but is not in the 
activeProcessInfoVector; this condition generates a “DOWN” alert. This 
situation means there is an orphaned process with no information in the database. 

The analysis we performed using the probabilistic anomaly detection algorithm is 
applied to the same data sources. We first wish to determine whether the same 
conditions that generate alerts in MCP will manifest as low probability or anomalous 
data as detected by PAD. Further, we wish to determine whether there are other low 
probability data events that might also generate alerts. Given the short duration of data 
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acquisition, it is not possible to provide an adequate assessment of the latter case 
without further injecting additional faults and running the application for a far longer 
period of time. Training a PAD model during a realistic application of TBMCS in an 
AOC-type environment (or in a user training environment) would be a minimum ideal 
set of data to analyze. 

3. PAD ALGORITHM 
The Probabilistic Anomaly Detection (PAD) algorithm is an efficient and robust 
algorithm that can process a huge amount of data in real time. It has been designed for 
data consisting of a set of features, each with a large number of discrete values. The 
basic idea behind PAD is that it trains over a data set and then checks to see if newly 
observed data are “consistent” with the previous ones. 

In general, a principled probabilistic approach to anomaly detection can be reduced to 
density estimation. It estimates a density function )(xp  over the normal data, and 
defines anomalies as data elements that occur with low probability. But in practice, 
estimating density is a very hard problem, especially for sparse data. Instead, PAD 
defines a set of consistency checks over training data, and any data that fails one of 
the consistency checks will be treated as anomalous. 

Basically there are two kinds of consistency checks: first order and second. First order 
consistency checks evaluate whether a single feature is consistent with other features 
in the dataset. Second order consistency checks evaluate if a pair of features is 
consistent with the data set. All consistency checks are evaluated by computing a 
predictive probability. This is done by estimating a multinomial using counts 
observed from the data set and then estimating the probability of seeing the 
observation. One of the clever aspects of PAD is the manner in which it estimates the 
probability of seeing unobserved data. 

Suppose each data record has n  features; we treat each feature as a random variable 
and write the data record as a set of random variables nxxx ,...,, 21 . Now each first 
order consistency check produces a score by computing )( ixp , which is the likelihood 
of an observation of a given value of feature ix . Second order consistency check is 
denoted by )|( ji xxp , which determines the conditional probability of a feature value 
given another feature value, where ix  and jx  are the feature variables. 

To estimate the probabilities we use the estimator presented in [Friedman and Singer, 
1999], that explicitly estimates the probability of observing a previously unobserved 
element. The details about the estimation formula will be skipped here. Please refer to 
the paper “Detecting Malicious Software by Monitoring Anomalous Windows 
Registry Accesses,” Stolfo, Apap, Eskin, Heller, Hershkop, Honig, and Svore, CU 
Tech Report Feb. 23, 2004. The essence of the idea is to estimate the likelihood of 
seeing new distinct values of a feature given the range of possible values the feature 
may take on and the proportion of distinct values observed while training. 

By way of example, consider a feature of a TCP packet data stream, the source IP 
address. The range of values of a source IP may span the entire 32-bit address space. 
But in a particular data stream one may observe, what is the likelihood of seeing a 
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distinct new IP address that has not been previously observed during some training 
period? Consider two cases, peering points and enclaves. Within a peering point, it is 
very likely that many distinct IP addresses will be observed simply since the peering 
point serves internet connectivity for a broad range of the network. For any period of 
time, it would be highly likely a new IP address will therefore be observed. In an 
enclave LAN environment, where there are a fixed number of assigned IP addresses, 
it is likely that during a sufficiently long training period all IP addresses within the 
enclave will be observed. The likelihood of seeing a distinct IP address not observed 
during training in this context would be highly unlikely. This principle is applied in 
PAD to produce a more robust estimator of the probability density of the training data. 

PAD is an unsupervised learning algorithm. One simply provides a set of discrete 
valued feature vectors to the algorithm, and a model is computed that consists of a 
number of “consistency checks”. These checks score a data item using the estimated 
probability density function as being consistent with the observed training data, or not. 
The decision process is based upon a threshold applied to the computed scores. 

In the experimental setting for this project, we input data supplied by the MCP 
sensors, apply PAD, and output a model. The model is then used to score the original 
data to find those data that are inconsistent with the rest of the training data. There are 
NO labels associated with the data. The core thesis is that data found to be 
inconsistent, low probability events, will have been generated by states of the TBMCS 
system associated with internal failures or faults, or misuses of the system. If this 
were not the case, then TBMCS would experience faults frequently, which we believe 
to be counter-intuitive. Further, PAD may detect certain low probability events that 
are not truly associated with a faulty state of TBMCS, but may instead be rare states 
exhibited by the system. This may be due to a lack of a sufficiently long period of 
time of observing the system in operation. 

In summary, we applied the PAD algorithm to only the RAWEVENT data of MCP 
data, which is the lowest level data gathered from the operation of TBMCS. The PAD 
models so generated should be a faithful representation of operation in practice of 
TBMCS. In principle, any “unlikely” data detected from the RAWEVENT stream 
ought to indicate a very unusual state of TBMCS, which may occur due to a fault, a 
misuse of the system, or some non-harmful but unusual state not observed previously. 
The determination of which of these three cases may be the cause for the anomalous 
data requires further drill-down and study. 

4. EVALUATION 

4.1  Numerical Number Preprocess 
PAD is originally designed for the features with discrete values, but in MCP there are 
several RAWEVENT data with numerical values. For example, cpuUsage and swap 
each are measured as numerical quantities. To apply PAD to these RAWEVENT data, 
we need to preprocess and discretize the data, otherwise the false positive will be too 
high. For example, cpuUsage 7.8999 and 7.9 should be treated as same value. If we 
use the numerical number directly, 7.8999 might appear only once or twice among all 
the data and will be caught as alert by PAD, which will cause false positive. 
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To avoid such problems, we approximate the number using a Gaussian distribution. 
We treat the numbers as a sample to compute the average and standard deviation, and 
then bin the data accordingly. The width of each bin equals the standard deviation, 
and the average is the center of the bin. The values falling in a bin will all be 
represented using the centroid of that bin. For example, if the average is 20 and the 
standard deviation is 4, then the bins will be ),14,10[  ),18,14[  ),22,18[  )26,22[ ,… The 
value 13.2 will be represented by 12, and 22.1 will be represented as 24. 

The width of the bin can be adjusted, but the idea behind this is to generate data-
dependent discretization of observed numerical values. Because PAD detects the low-
probability events, using Gaussian approximation is a reasonable choice. We can 
study more accurate regression methods later, for example, radial basis functions. 

4.2  RAWEVENT Representation 
We experimented with two different representations of the RAWEVENT data, which 
reflect two different aspects about the system status. The first representation used is 
“native,” which is the RAWEVENT directly collected from MCP; the second 
representation is the “dynamics” of the audit stream; that is, we computed features 
that represent the information that changed in the system over consecutive 
checkpoints. The native representation is referred to as “Approach I” in the 
performance graphs displayed in the performance section of this report, while 
Approach II refers to the derivative features extracted from the data. 

For example, when considering the RAWEVENT cpuUsage, we observe a series of 
numbers collected from the system periodically, e.g., 13.5, 84,7, … ,86.3, 99.4, and so 
forth. Using the first approach, we can use these numbers directly and discretize them 
as described above. These feature values are then used directly in PAD. If the average 
of cpuUsage is 30 and standard deviation is 15, the cpuUsage of 99.4 might trigger 
an alert because it means the current system has too heavy a computational load. 

However, in the second representation, we consider the amount of change in these 
numerical values. For these derivative numerical features, for example, the numbers 
computed from the sequence of raw data collected become: 71.2, … , -10.3, 13.1, and 
so forth. If the average of these numbers measuring the change in cpuUsage is 3.42 
and the standard deviation is 4.58, the observed value of 71.2 might trigger an alert 
because that means the system had a sudden abnormal huge increase in computational 
load. The reason for such a sudden huge change might indicate a fault in the system. 
Or, as determined by training in PAD, it may not be an unusual event. 

For the unixProcessList and activeProcessInfoVector data of the RAWEVENT 
stream with discrete values, we treat them as a set, and the change of status is the 
difference of the two consecutive sets )()( ABBA −∪− , with their difference in size 

|||| AB − , (given that B  occurs after A ). 

Given these two representations of the MCP data stream, we next describe the results 
of our automated training and analysis to determine whether or not we may generate a 
model consistent with current MCP logic rules that generate alerts. 
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4.3  Data and Model Details 
We will use pingCollection RAWEVENT as a simple example to illustrate the work 
of PAD. A piece of the phase3 raw data is as follows: 

<RAWEVENT id=“RAWEVENT.mcpsv1.ping.pingCollection.345” 
hostname=“mcpsv1” datetime=“06.26.2003 16:50:09:407 BST”> 

<PROPERTYCHANGED name=“pingCollection” scriptName=“ping”> 
<NEWVALUE><PING_COLLECTION> 
<PING targetHost=“128.132.41.67” result=“false” latency=“2147483647”/> 
<PING targetHost=“128.132.41.71” result=“true” latency=“10”/> 
<PING targetHost=“128.132.41.73” result=“true” latency=“10”/> 
<PING targetHost=“128.132.41.78” result=“true” latency=“10”/> 
<PING targetHost=“128.132.41.69” result=“true” latency=“10”/> 
<PING targetHost=“128.132.41.64” result=“true” latency=“10”/> 
<PING targetHost=“128.132.41.70” result=“true” latency=“10”/> 
<PING targetHost=“128.132.41.74” result=“true” latency=“10”/> 
<PING targetHost=“128.132.41.77” result=“true” latency=“10”/> 
<PING targetHost=“128.132.41.56” result=“true” latency=“10”/> 
</PING_COLLECTION></NEWVALUE> 
</PROPERTYCHANGED> 
</RAWEVENT> 

Because the targetHost are fixed, we will use only result and latency as the features 
for pingCollection RAWEVENT. So the input to PAD (as a line delimited set of 
feature values) will be: 

… … 
false 2147483647 
true 10 
true 10 
… … 

The formatted data file size is 182760 bytes, and the model generated by PAD for the 
raw data is only 4666 bytes. 

The result after running PAD appears as follows (here with two feature values, 
followed by 6 scores): 

false 2147483647 : -4.744362 -4.460786 0.676618 0.256720 0.536305 0.680725 
true 10 : 0.688787 0.687354 0.693076 0.692501 0.691068 0.693075 

There are 6 possible scores that may be generated for each record containing two 
features. If we denote the first column as 1x  and second column as 2x , the six 
consistency check scores computed are for )(),( 21 xpxp , )|(),|( 2111 xxpxxp , 

)|(),|( 2212 xxpxxp , respectively. We don’t use )|( 11 xxp  and )|( 22 xxp , since they 
are redundant. Because of numerical computation issues, (e.g., possible underflow,) 
the values are the log of the probability estimate. The smaller the value, the lower the 
probability the event is consistent with the training data. So those records with score 
values smaller than some threshold will be treated as abnormal events. The threshold 
can be adjusted to control the hit rate and false positive rate. If we set the threshold to 
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-4 for the above example, the record “false 2147483647” will be deemed “abnormal” 
and trigger the alert; while the record “true 10” is deemed normal. 

4.4  Performance Comparison 
Since the MCP ground truth in the datasets provided is limited to three RAWEVENTs 
that are used to generate two kinds of alerts, we first compare how well PAD can 
compare MCP alert output for these three events. We also generated alert output for 
all data and describe these results later in the discussion section. Since there is no 
ground truth for these cases, we can only speculate about the effectiveness of the 
method. 

4.4.1 PingCollection 
 
There are 10 hosts in the whole system, so each pingCollection RAWEVENT 
contains the ping time information about all these 10 hosts. In this experiment we use 
the native MCP audit data with discretized numerical features. Applying PAD to the 
pingCollection, we get: 

RAWEVENT Alert of MCP Alert of PAD Hit rate False Positive 
pingCollection 10 29 100% 4.2% 

From the table we can see PAD can successfully catch all those alerts that MCP 
generated but with a false positive rate of 4.2%. But upon inspection of the data 
deemed anomalous by PAD, we found the 19 “extra” alerts from PAD are indeed true 
alerts, not false positives. Each of the RAWEVENTs that generated the 19 alerts 
reveals that one or more hosts are unreachable. The reason why MCP only produces 
10 alerts is that MCP includes an “alarm suppression” feature that will not generate a 
continuous stream of alerts for the same host. If an alert is generated by MCP that 
indicates a host is unreachable, in the following sensor data collected in the 
RAWEVENT stream, MCP won’t issue more alerts. No such alert suppression 
scheme is presently implemented in PAD, so it correctly generates alerts for these 
conditions. This means PAD can successfully detect all the alerts accurately about 
unreachable hosts with a zero false positive rate. 

4.4.2 unixProcessList and activeProcessInfoVector 
 
MCP uses the combination of SUBEVENTs unixProcessInfoVector and 
activeProcessInfoVector to generate alerts. This requires time synchronization. 
SUBEVENTs occurring at the same time might be triggered by RAWEVENTs 
gathered at slightly different times. It’s particularly difficult to determine the exact 
pair of unixProcessList and activeProcessInfoVector RAWEVENTs used by the 
logic modules of MCP and the means employed to synchronize this information. So 
we use unixProcessList and activeProcessInfoVector separately. As we said before, 
because MCP only considers three types of processes, we extract only the information 
about those three types of processes and compare the result to the case where all the 
processes are included in the model. 

We have the following results: 
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Figure 1. ROC curve for activeProcessInfoVector RAWEVENT 

when using the "native" RAWEVENT information. 
The plot labeled “only 3 processes” is the case when we model  
only the three types of processes: aps_assess, apsqtp and apsui. 

 
Figure 2. ROC curve for activeProcessInfoVector RAWEVENT 

when using the “Dynamic” RAWEVENT information. 
The plot labeled “only 3 processes” is the case when we model  
only the three types of processes: aps_assess, apsqtp and apsui 
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From Figures 1 and 2 for activeProcessInfoVector RAWEVENTs, we can see that 
considering only the 3 types of processes won’t help. That’s because these three types 
of processes are common processes and appear often. It is not abnormal if they exist. 
On the contrary, there might be some problem with the system if they disappear from 
the RAWEVENT data. That’s why using the second approach, the representation that 
considers the dynamics of the system’s operation, produces a better result. But all 
these results are not satisfactory. 

From the above analysis we think filtering out only those three types of processes 
cannot help increase the performance. For the unixProcessList RAWEVENT, we use 
the information about all the processes and compare our results between the two 
representations, “native” and “dynamic”. 

 
Figure 3. The ROC curve of unixProcessList RAWEVENT 

using information about all of the processes. 
The comparison is between representation approach I and approach II. 

Comparing Figure 3 with Figures 1 and 2, we see that the models employing the 
unixProcessList RAWEVENT data produces a better result than 
activeProcessInfoVector RAWEVENTs. This is perhaps because unixProcessList 
gives more information about the system, while activeProcessInfoVector is only 
database related. Combining them might improve the final result if we can find a good 
way to pair these two sources of information together in one model. 

4.4.3 swap and cpuUsage 
MCP didn’t use the information of swap and cpuUsage to generate alerts, so we 
cannot produce a hit rate and false positive comparison. But PAD does find some 
abnormal events that happened very infrequently. For example, in the phase 2 data set, 
the host opcli01 had cpuUsage 97.0 and 96.5, while the average of cpuUsage is only 
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9.23 with a standard deviation of 9.43. But for host plcli02, cpuUsage of 97.0 is 
pretty normal, since its average is 90.7 with a standard deviation of 25.43. PAD can 
successfully generate alerts of opcli01 and didn’t introduce false alerts to plcli02. 
Similar results apply to swap RAWEVENT data. 

The TBMCS system might work well under these situations of measured cpu usage 
and swap space, but perhaps issuing alerts to cases where sensors measure very high 
CPU usage or very low available swap space may be a good indicator of the system’s 
tenuous state. At least we know this state is not usual in TBCMS operation. 

4.5  Discussion 
The experimental result shows that machine-learning method can work effectively on 
MCP data on some kinds of RAWEVENTs, but does not work very well on other 
events. We are not sure about the reasons and need more exploration of the data. 
Intuitively, the following aspects might have affected the results: 

1. First, there might not be enough data to train an effective model. We have only 
three datasets, each around 150 MBytes. The phase1 dataset was configured 
wrong , so we didn’t use it. Phase 3 also seems to have a configuration error. 
Each of the data sets is about a 4-hour run of TBMCS, which may be far from 
enough time to reveal sufficient span of the operational states of the system. 

2. The logic to generate alerts in MCP is very restricted, and its use of the 
combination of SUBEVENTs that generate alerts makes it very hard to catch 
the exact same alerts from RAWEVENTs directly. This partially explains the 
bad ROC curves. 

3. There might be some internal error in MCP logic. Using SUBEVENTs instead 
of RAWEVENTs introduces some delay, especially with a 20-second cycle 
time of sensor data acquisition; and it is hard to synchronize the whole system 
in its current architecture. Some sensor data is gathered on a different time 
scale, and correlating the separate data sources is not possible. Thus, the alerts 
may be generated from RAWEVENTs at different points in time which may 
not reflect the status of the whole system in a consistent way. It is possible that 
this monitoring architecture could have missed some real alerts and generated 
some false alerts. MCP continues to be developed, and we suggest that effort 
be devoted to establishing a common cycle time for all sensor data acquisition. 

5. Subsequent Research Work 
The work stated above is just an initial step towards the goal of applying machine 
learning methods to detect anomalies in application level data. There are several 
important areas of investigation we pursued as next steps of our work: 

1. Improve the PAD algorithm to: 

a. handle numerical feature values directly as a mixture of Gaussians. 

b. add the capability to do feature selection automatically 

c. provide the means of “pruning” features from the model that can’t 
possibly generate anomalous scores and 
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d. provide a means of calibrating PAD score threshold in an automatic 
fashion. 

2. Consider applying other related machine learning methods. Modeling the 
dynamics of sensor data using Hidden Markov Models might be better, 
especially when combined with PAD models. 

3. MCP is a convenient study case for this work and it would be worthwhile to 
continue working collaboratively with Rome Labs and the MCP team. We 
hope to develop a general framework that can be applied to any large 
distributed system; and this may require a deeper understanding of exactly 
what sensors would work best in a general setting. The current set of sensors is 
obviously driven by available tools in Unix (ps, ping, etc.). 

4. We believe it was necessary to perform a deeper analysis involving the 
payload data exchanged between processing hosts within the system might 
reveal other important information of value in detecting faulty states of the 
system. Payload analysis is an open topic for research. We briefly describe our 
results next. 

6. Payload Anomaly Detection 
We conceived of a novel payload-based anomaly detector, we call PAYL, for 
intrusion detection. PAYL models the normal application payload of network traffic 
in a fully automatic, unsupervised fashion. The method we choose is very efficient; 
our goal was to deploy the detector in high bandwidth environments either on a 
firewall, a network appliance, a proxy server, or on the target hosts. We first compute 
during a training phase a profile byte frequency distribution and their standard 
deviation of the application payload flowing to a single host and port. We then use 
Mahalanobis distance during the detection phase to calculate the similarity of new 
data against the pre-computed profile. The detector compares this measure against a 
threshold and generates an alert when the distance of the new input exceeds this 
threshold. 

The full technical details of the sensor have been reported in a publication: 

Ke Wang, Salvatore J. Stolfo. “Anomalous Payload-based Network Intrusion 
Detection”. Proceedings of Recent Advances in Intrusion Detection, RAID, 
Sept. 2004. 

7. File System Anomaly Detection 
FWRAP is a Host-based Intrusion Detection System that monitors file system calls to 
detect anomalous accesses. The system is intended to be used not as a standalone 
detector, but as one of a correlated set of host-based sensors. The detector has two 
parts, a sensor that audits file systems accesses, and an unsupervised machine learning 
system that computes normal models of those accesses. We developed an architecture 
for the file system sensor and implemented it on Linux using the FiST file wrapper 
technology and measured results of the anomaly detector applied to experimental data 
acquired from this sensor. FWRAP employs the Probabilistic Anomaly Detection 
(PAD) algorithm previously reported in our work on Windows Registry Anomaly 
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Detection and utilized in the MCP study. FWRAP represents a general approach to 
anomaly detection. The detector is first trained by operating the host computer for 
some amount of time and a model specific to the target machine is automatically 
computed by PAD, intended to be deployed to a real-time detector. In the following 
paper, we fully detail the feature sets used to model file system accesses, as well as 
the performance results of a set of experiments using the sensor while attacking a 
Linux host with a variety of malware exploits: 

Salvatore J. Stolfo, Shlomo Hershkop, Linh H. Bui, Ryan Ferster, and Ke 
Wang. “Unsupervised Anomaly Detection in Computer Security and An 
Application to File System Accesses”. Proceedings of the International 
Symposium on Methodologies for Intelligent Systems, 2005. 

Copies of both cited papers have been included in the final report transmitted. 


